Skip to main content

Blogs

Cadet Summer Training Ft. Knox

Submitted by jtbr283 on Fri, 09/30/2022 - 12:09 pm

UK Army ROTC Cadets participated in Cadet Summer Training at Ft. Knox, Kentucky.  They conducted training in land navigation, marksmanship, squad tactics, and participated in other activites that tested their leadership, resilience, and physical stamina.  These Cadets represent the future leaders of our Army. 

UNDERWATER TREES

Submitted by jdp on Wed, 09/28/2022 - 06:00 pm

Tupelo gum and bald cypress (Nyssa aquatica and Taxodium distichum) are the main trees you are likely to find in perennially flooded deepwater swamps and stream channels in the southeastern U.S.A. Once established, they can grow in sites that are always inundated. However, they cannot germinate from seeds and establish seedlings in standing water. The substrate must be exposed at least once, at the right time of year, for that to happen. 

So how come you can find cypress and tupelo growing in perennially flooded areas, in standing water, that apparently never dry out? How do they get a start on the bottom of a stream or lake?

Pinetree Creek, an anabranch of the lower Neuse River, N.C.

The obvious answer is that they (or their parents, if they grew from stump sprouts or nurse logs) got their start when the site was not flooded, or always inundated, or that they got their start on some raised spot within the water that is no longer evident.

LESSONS FROM THE HOT SPOTS & COLD SPOTS

Submitted by jdp on Sat, 09/10/2022 - 12:50 pm

Last year, I wrote about how the warnings about human-accelerated climate change we’ve been hearing (and those of us in the business have been sending) for decades are, unfortunately, coming true. Almost daily, our news feeds remind us of this, or provide new evidence that Earth’s climate, and the environmental systems affected by it, are approaching unknown territory. We are seeing ocean temperatures, ice loss from the great Antarctic and Greenland ice sheets, storm and flood regimes, heat waves, and fires that are unprecedented in human history and in some cases unprecedented in Earth history, period. 

National Weather Service heat warnings for California

 

ESL: ENGLISH AS THE SCIENTIFIC LANGUAGE

Submitted by jdp on Sat, 08/27/2022 - 03:16 pm

As much as we’d like to think otherwise, the facts (data, analyses, results, observations) do not speak for themselves. As scientists and educators, we are obliged to explain and interpret the facts; to attach meaning to them. As things have come to pass in the scientific world, we are obliged to speak for the facts in English. 

This post was inspired by a discussion posted on researchgate.net by Alejandro Bortolus of the Centro Nacional Patagonico (Argentina): Is the use of English in scientific articles a real need for an international working language, or a sign of long-lasting Colonialism? The lively discussion can be accessed here.

You can’t rely on me for a comprehensive and coherent summary of the comments and reactions, but some key themes are:

•The (obvious) advantages of having a single lingua franca to support global scientific communication. 

•The (obvious) advantages of respecting and preserving local languages and multilingualism, and allowing authors and scientists to communicate at their best, which is usually in our native languages.

Eastern Kentucky Flood Relief - Donations & Updates

Submitted by japerr2 on Tue, 08/02/2022 - 03:55 pm

 

UPCOMING BENEFIT - NOVEMBER 27th, 2022

sunspot

Marisa Anderson w. Ed Sunspot
Benefitting the Appalachian Artisan Center for Eastern Kentucky Flood Relief

Marisa Anderson channels the history of the guitar and stretches the boundaries of tradition. Her deeply original work applies elements of minimalism, electronic music, drone and 20th century classical music to compositions based on blues, jazz, gospel and country music, re-imagining the landscape of American music. The New Yorker calls Anderson "one of the most distinctive guitar players of her generation," while NPR refers to her as among 'this era’s most powerful players."

https://www.marisaandersonmusic.com/home

CAN FORESTS BUILD ARGILLIC HORIZONS?

Submitted by jdp on Tue, 07/26/2022 - 04:43 pm

Spoiler alert--the answer is: maybe, but I’m not sure.

Argillic horizons are subsoil layers that are enriched in silicate clays. I have long been interested in soil morphology as it relates to argillic horizons. First, it was with respect to soil erosion. As these horizons are by definition formed below the surface, their exposure at or near the ground surface indicates removal of overlying soil. To the extent soils have a characteristic depth, or range of depths, to the top of the argillic horizon, then variations in DTA (depth to argillic) can indicate erosion or deposition. I used this to study soil erosion in the North Carolina coastal plain and piedmont in the late 1980s and 1990s, and in the Ouachita Mountains of Arkansas in the 2000s and 2010s.

Multiple argillic horizons in a Kandiustult in Zambia (source: https://www.uidaho.edu/cals/soil-orders/ultisols).

CRISES & OPPORTUNITIES ON INFINITE EARTHS

Submitted by jdp on Tue, 07/12/2022 - 04:05 pm

Some incomplete thoughts and notes on Earth surface system (ESS) evolutionary pathways, focusing on how to think about the enormous variety and large number of possibilities.

 

ESS encompasses geomorphic and soil landscapes, hydrological systems, and ecosystems. There exists a huge variety of them on our planet. Assuming we could ever inventory or even estimate them all, we can define NESS  as the number of ESS. For each of these multiple possible evolutionary pathways exist. So we define

Ni(p) = number of possible evolutionary pathways for each of i = 1, 2, . . . , NESS.

Image credit: Turbosquid.com

At any given point in history there were multiple potential evolutionary possibilities, such that Nglobal(p) = number of total possible pathways = Σ Ni(p). However, only one history has occurred for each individual ESS, so that the number of actual past pathways now manifest = NESS.

STRUCTURAL REDUNDANCY IN BIOGEOMORPHOLOGY

Submitted by jdp on Fri, 07/08/2022 - 09:11 am

In ecological systems, structural redundancy refers to the extent to which more than one species (or taxanomic group) can perform a given function or play a given role in the system. Microbial communities or ecosystems, for instance, tend to have high structural redundancy at the species level, as there usually exists multiple bacteria or other microbes that can, say, break down specific forms of organic matter, reduce iron, precipitate calcium, or what have you. Systems with a single keystone species have low redundancy, at least with respect to whatever the keystone organism does (if something else could perform the same function, then it would not be a keystone). Redundancy tends to be inversely correlated to the degree of biotic specialization, and directly related to ecosystem resilience.