Skip to main content

Department of Biology Ribble Endowment Seminar

"The Problem of Time in Climate Change Ecology" knmorg2

Wolkovich Selfie

Dr. Elizabeth Wolkovich | Wolkovich Lab

Bio
Elizabeth Wolkovich is an Associate Professor in Forest and
Conservation Sciences and Canada Research Chair at the University of British Columbia. She runs the Temporal Ecology Lab, which focuses on understanding how climate change shapes plants and plant communities, with a focus on shifts in the timing of seasonal development (e.g., budburst, flowering and fruit maturity)---known as phenology. Her lab both collects new data on forest trees and winegrapes and collates existing data to provide global estimates of shifts in phenology with warming from plants to birds and other animals, and to understand how human choices will impact future winegrowing regions. Her research benefits from an interdisciplinary team of collaborators from agriculture, biodiversity science, climatology, evolution and viticulture, as well as from shared long-term datasets from across North America and Europe.

Abstract
Forty years ago ecology became increasingly focused on spatial structure and pattern, as researchers realized how fundamentally habitat loss and fragmentation reshapes populations and communities. A generation later, with spatial ecology firmly established as a cross-disciplinary, multi-scale field, anthropogenic climate change has forced ecology to revisit the importance of time. As warming stretches growing seasons around the globe, populations, species, communities and ecosystems are responding in turn. In this talk I outline two major challenges of temporal ecology with anthropogenic warming: stretched time and accelerated time. Focusing on
plant phenology I show how longer growing seasons may re-assemble communities: first I focus on examples from invasion biology then I build to a more general theory. Next I show how how warming may make many biological processes that are dependent on thresholds appear to slow as warming continues. This is because warming accelerates biological time while calendar time stands still. I close by reviewing preliminary results that merge phenological cues with trait ecology to show that forests may assemble via their spring phenology.
 

Date:
Location:
THM 116
"The Molecular Circadian Clock and the Impact of Disrupted Rhythms and Sleep on Health and Disease" knmorg2

Turek Selfie

Dr. Fred Turek

Bio:
Fred W. Turek, PhD received his undergraduate degree in the biological sciences from Michigan State University in 1969, and his PhD from Stanford University in 1973 where he carried out research on circadian and seasonal rhythms.  After postdoctoral training at the University of Texas at Austin, he took a faculty position at Northwestern University where he served as the Chair of the Department of Neurobiology & Physiology from 1987-98.  Dr. Turek is the founder and current Director of the Center for Sleep and Circadian Biology at Northwestern University.  Dr. Turek was the founding president of the Society for Research on Biological Rhythms (SRBR) and served in this capacity for six years.

 

 

 

Date:
Location:
THM 116
"Genetic, Social, and Developmental Drivers of Within-population Behavioral Variation" knmorg2

Laskowski Selfie

Dr. Kate Laskowski | Laskowski Lab

Bio:
Dr. Kate Laskowski is interested in investigating how evolution has shaped the developmental processes that generate behavioral individuality. She does this by generating replicate individuals and groups of the naturally clonal fish, the Amazon molly, allowing her to “replay the developmental clock.” Kate obtained her Bachelor’s of Science at the University of Maryland Baltimore County and her PhD from the University of Illinois where she worked under Alison Bell. She then moved to Berlin Germany to work at the Leibniz Institute of Freshwater Ecology & Inland Fisheries with Max Wolf and Jens Krause before joining the Department of Evolution & Ecology at the University of California Davis in 2019.  

Abstract:
Individual behavioral variation is ubiquitous across the animal kingdom. Explaining the continued generation and maintenance of such variation is a fundamental goal in behavioral and evolutionary ecology. Our research tests key predictions drawn from theoretical models about how genetic correlations and developmental processes can drive the emergence of consistent individual behavioral variation. This work has shown that competition for, and acquisition of, resources may play key roles in shaping behavior variation both on evolutionary and developmental timescales. Using the clonal Amazon molly and an innovative high-resolution tracking system we can follow and manipulate individual experience with salient environmental cues such as resource availability and relative risk. We can track the behavioral development of individual fish from birth in, up to now, unprecedented detail, allowing us to pinpoint exactly when and in response to which cues individuality emerges. Our results highlight that in order to fully explain the presence of individual behavioral variation we need a comprehensive conceptual framework that explicitly accounts for how natural selection has shaped the developmental process.

Laskowski Fish

Date:
Location:
THM 116
"Quantitative Proteomics for Understanding Epigenetic Mechanisms in Human Disease" knmorg2

Garcia Selfie

Dr. Benjamin Garcia | Garcia Lab

Bio: 
Benjamin A. Garcia obtained his BS in Chemistry at UC Davis in 2000, where he worked as an undergraduate researcher in Prof. Carlito Lebrilla’s laboratory. He received his PhD in Chemistry in 2005 at the University of Virginia under Prof. Donald Hunt and then was an NIH NRSA Postdoctoral Fellow at the University of Illinois under Prof. Neil Kelleher from 2005-2008. From there Ben was appointed as an Assistant Professor in the Molecular Biology Department at Princeton University from 2008-2012, until his recruitment as the Presidential Associate Professor of Biochemistry and Biophysics at the University of Pennsylvania Perelman School of Medicine in 2012, promoted to full Professor in 2016, and named the John McCrea Dickson M.D. Presidential Professor in 2017. Ben moved in the summer of 2021 to the Washington University School of Medicine in St. Louis to become the Raymond H. Wittcoff Distinguished Professor and Head of the Department of Biochemistry and Molecular Biophysics. The Garcia lab has been developing and applying novel proteomic approaches and bioinformatics for interrogating protein modifications, especially those involved in epigenetic mechanisms such as histones during human disease, publishing over 400 publications. He is presently an Associate Editor of the Analytical Chemistry, and Mass Spectrometry Reviews journals; and serves on the editorial boards for the Molecular Omics, the Journal of Proteome Research and the Molecular and Cellular Proteomics journals. He also serves on the Board of Directors for the U.S. Human Proteome Organization (HUPO), the HUPO Governing Council/Executive Committee and the Executive Committee of the American Chemical Society (ACS) Analytical Chemistry Division. Ben has been recognized with many honors and awards for his mass spectrometry research including the American Society for Mass Spectrometry (ASMS) Research Award, a National Science Foundation CAREER award, an NIH Director’s New Innovator Award, the Presidential Early Career Award for Scientists and Engineers (PECASE), an Alfred P. Sloan Fellowship, the PITTCON Achievement Award, the Ken Standing Award, the ACS Arthur F. Findeis Award, The Protein Society Young Investigator Award, the ASMS Biemann Medal, the HUPO Discovery in Proteomic Sciences Award, the Eastern Analytical Symposium (EAS) Outstanding Achievement in Mass Spectrometry Award and was named a Fellow of the Royal Society of Chemistry.

Abstract:
Histones are small proteins that package DNA into chromosomes, and a large number of studies have showed that several post-translational modification (PTM) sites on the histones are associated with both gene activation and silencing.  Along with DNA and small non-coding RNA, histone PTMs make up epigenetic mechanisms that control gene expression patterns outside of DNA sequence mutations. Dysregulation of these chromatin networks underlie several human diseases such as cancer. Here I will give an update on technology advancements that have allowed for high-throughput quantitative mass spectrometry analyses of histone PTMs and chromatin structure, and how we are applying these methods to understand epigenetic reprogramming found in malignant peripheral nerve sheath tumors (MPNSTs). MPNST is an aggressive sarcoma with recurrent loss of function alterations in polycomb-repressive complex 2 (PRC2), a histone-modifying complex involved in transcriptional silencing.

Date:
Location:
THM 116
"Be Fruitful and Multiply: How Reproductive Capacity Evolves" knmorg2

Selfie

Dr. Cassandra Extavour | Extavour Lab

Bio
Cassandra Extavour is a native of Toronto, where she attended the University of Toronto Schools and went on to obtain an Honors BSc at the University of Toronto with a specialist in Molecular Genetics and Molecular Biology, a Major in Mathematics and a Minor in Spanish. She obtained her PhD with Antonio Garcia Bellido at the Severo Ochoa Center for Molecular Biology at the Autonomous University of Madrid. She performed postdoctoral work first with Michalis Averof at the Institute for Molecular Biology and Biotechnology in Crete, Greece, and subsequently with Michael Akam at the University of Cambridge. At Cambridge she received a BBSRC Research Grant and became a Research Associate in the Department of Zoology. In 2007 she established her independent laboratory as an Assistant Professor in the Department of Organismic and Evolutionary Biology at Harvard University, where she was promoted to Associate Professor in 2011 and to Full Professor in 2014. In 2021 she became a Howard Hughes Medical Institute Investigator, and was named the Timken Professor of Organismic and Evolutionary Biology and of Molecular and Cellular Biology at Harvard. Click here to read more.

Abstract:
Reproduction is a crucial fitness parameter, essential for species survival and evolution. Despite its importance, there is massive variation in reproductive capacity across animals, even between very closely related species. Moreover, reproductive capacity can be modified by environmental and ecological factors. Our aim is to understand how genetic variation interacts with ecological variation to regulate distinct and reproductive capacities between species, to determine whether and how ecological variation contributes to the evolution of adaptive variation in reproductive capacity. Our approach takes advantage of the fact that in sexually reproducing animals, the number of offspring that an individual can produce is often predicted by the anatomy of the ovary or testis, the sites of gamete production. In female insects, ovaries are subdivided into egg-producing units called ovarioles, which are generated in species-specific numbers during development. Ovariole number, and correspondingly reproductive capacity, can vary by more than four orders of magnitude across insects. I will discuss our findings on the mechanisms of genetic and environmental control of ovariole number in closely and distantly related insect species, and their implications for the broader questions of the genetic and developmental basis of fitness-relevant evolutionary change.

Date:
Location:
THM 116
Thomas Hunt Morgan Annual Alumni Reception knmorg2

Invite

Date:
Location:
Thomas Hunt Morgan House, 210 N. Broadway, Lexington, KY 40507
14th Annual Thomas Hunt Morgan Lecture: "Human Evolution and Adaptation in Africa" knmorg2

Click here for more information about Dr. Sarah Tishkoff.

Abstract:

Africa is thought to be the ancestral homeland of all modern human populations.  It is also a region of tremendous cultural, linguistic, climatic, and genetic diversity.   Despite the important role that African populations have played in human history, they remain one of the most underrepresented groups in human genomics studies. A comprehensive knowledge of patterns of variation in African genomes is critical for a deeper understanding of human genomic diversity, the identification of functionally important genetic variation, the genetic basis of adaptation to diverse environments and diets, and for reconstructing modern human origins. African populations practice diverse subsistence patterns (hunter-gatherers, pastoralists, agriculturalists, and agro-pastoralists) and live in diverse environments with differing pathogen exposure (tropical forest, savannah, coastal, desert, low altitude, and high altitude) and, therefore, are likely to have experienced local adaptation. In this talk I will discuss results of analyses of genome-scale genetic variation in geographically, linguistically, and ethnically diverse African populations in order to reconstruct human evolutionary history in Africa, African and African American ancestry, as well as the genetic basis of adaption to diverse environments.

Invite

Date:
Location:
WT Young Library Auditorium
"Cells and Molecules for Touch, Pain and Interoception" knmorg2

Dr. Alexander Chesler | Chesler Lab

Chesler
Bio
Dr. Chesler received his degrees from Bard College (B.A., 1995) and Columbia University (Ph.D., 2005). His graduate study, in the laboratory of Dr. Stuart Firestein, was focused on the function and development of olfactory sensory neurons. He did his postdoctoral training in the laboratory of Dr. David Julius at the University of California, San Francisco, where he combined physiological, anatomical, and behavioral approaches to study the pharmacology of somatosensory neurons. He joined the NIH intramural pain program (NCCIH) in 2013 where his laboratory now employs multidisciplinary approaches to study how sensory stimuli (such temperature, touch, and environmental irritants) are detected and encoded by the somatosensory system.

Watch the seminar here!

Date:
Location:
THM 116
"Leveraging Animal Behavioral Interactions to Learn About Cognition & Social Dynamics" knmorg2

Selfie

 

 

Dr. Elizabeth Hobson | Hobson Lab

Bio
Dr. Hobson received her PhD from New Mexico State University and was awarded two independent postdoctoral fellowships, the first at NIMBioS (the National Institute for Mathematical and Biological Synthesis) and the second at the Santa Fe Institute. She started her lab at the University of Cincinnati in Fall 2019 and is currently an Assistant Professor.

Abstract:
In many social species individuals create their social worlds through interaction decisions and are then subject to and constrained by these social constructs, which can affect an individual’s future actions. Understanding how much individuals “know” about their social worlds is critical in understanding these potential feedbacks. However, it is difficult to determine how much information individuals have about the social structures in which they live. In this talk, I summarize several ways my group is addressing these questions by combining empirical experiments with computational approaches to provide insight into cognition through social decisions. I highlight new work on parakeet aggression and dominance hierarchies to illustrate this approach. I show evidence that parakeet rank is unlikely due to individual characteristics and that group-level social dominance patterns can be plastic and can respond to group membership changes. Finally, I show how parallel or related experiments can allow for comparative analyses across species. These approaches, and a taxonomically broad perspective, provide new opportunities to investigate the effect of social information on individual behavior within conflict, and has the potential to provide rigorous evidence for the evolutionary patterns underlying social cognition.

Watch the seminar here!

 

Date:
Location:
THM 116
"Overwintering in the Arctic: Animal Strategies for Surviving the Long, Cold, and Dark" knmorg2

SelfieDr. Brian Barnes

Bio:
Dr. Barnes is currently a Professor of Zoophysiology with the Institute of Arctic Biology at the University of Alaska in Fairbanks. He's also the Director of Alaska INBRE, an NIH capacity building program in biomedical research and also the Science co-Director at Toolik Field Station. He participated in summer workshops involving biological rhythms at Hopkins Marine Station. He has a  PhD in Zoology from the University of Washington where Jim Kenagy was his advisor. Dr. Barnes received his Post-doc in Psychology and Zoology with Irv Zucker and Paul Licht as advisors. He began as Assistant Professor at the University of Alaska in 1986.

Abstract:
In Alaska, winters begin early, last seemingly forever, are very cold, snowy and dark, as well as extremely beautiful, quiet, and serene. This talk will review the physiological and behavioral strategies available to animals for surviving and coping with arctic winters, including cryobiology in insects, freeze tolerance in frogs, and hibernation in ground squirrels and bears. Using data logging and advanced telemetry, the locations, behavior, sleep, circadian rhythms, cardiovascular patterns, and thermoregulation of animals were recorded as they overwinter under natural conditions.

Cucujus beetle larvae may not freeze at temperatures below -80C, wood frogs freeze almost solid and survive; arctic ground squirrels lose track of time, become torpid while colder than ice but warm to sleep, even as black bears continuously doze, only occasionally snore, and their hearts beat in a syncopated rhythm. Little is known about the genetic and molecular basis of hibernation, but discovering its mechanisms could lead to novel clinical therapies and escape strategies in humans.

Watch the seminar here!

Date:
Location:
THM 116
Subscribe to Department of Biology Ribble Endowment Seminar