Skip to main content

Biology Ribble Endowment Seminar

"Adaptation in Arabidopsis through Space and Time"

Pictured is Dr. Jesse Lasky wearing a plaid collared navy with pink and yellow button up shirt.Dr. Jesse Lasky | Lasky Lab

Bio:
Dr. Jesse Lasky attended Kenyon College and received his BA in Biology and a PhD in Ecology Evolution & Behavior at UT-Austin. Dr. Lasky was a postdoc at Columbia University and is now a faculty member at Penn State University, in addition to being the herbarium director.

Abstract:
Global patterns of population genetic variation through time offer a window into evolutionary processes that maintain diversity. Over time, lineages may expand or contract their distribution, causing turnover in population genetic composition. At individual loci, migration, drift, and selection (among other processes) may affect allele frequencies. Museum specimens of widely distributed species offer a unique window into the genetics of understudied populations and changes over time. Here, we sequenced genomes of 130 herbarium specimens and 91 new field collections of Arabidopsis thaliana and combined these with published genomes. We sought a broader view of genomic diversity across the species, and to test if population genomic composition is changing through time. We documented extensive and previously uncharacterized diversity in a range of populations in Africa, populations that are under threat from anthropogenic climate change. Through time, we did not find dramatic changes in genomic composition of populations. Instead, we found a pattern of genetic change every 100 years of the same magnitude seen when comparing Eurasian populations that are 185 km apart, potentially due to a combination of drift and changing selection. We found only mixed signals of polygenic adaptation at phenology and physiology QTL. We did find that genes conserved across eudicots show altered levels of directional allele frequency change, potentially due to variable purifying and background selection. Our study highlights how museum specimens can reveal new dimensions of population diversity and show how wild populations are evolving in recent history.

A photo with dried Arabidopsis thaliana, also known as thale cress, taped to an off white sheet of paper. There is a bright white square piece of paper in the bottom left corner that has writing. The title of this sheet of paper is "Herbier du Bureau de Botanique appliquee, Petrograd.".

Date:
Location:
THM 116

"Adaptation in Arabidopsis through Space and Time"

Pictured is Dr. Jesse Lasky wearing a plaid collared navy with pink and yellow button up shirt.Dr. Jesse Lasky | Lasky Lab

Bio:
Dr. Jesse Lasky attended Kenyon College and received his BA in Biology and a PhD in Ecology Evolution & Behavior at UT-Austin. Dr. Lasky was a postdoc at Columbia University and is now a faculty member at Penn State University, in addition to being the herbarium director.

Abstract:
Global patterns of population genetic variation through time offer a window into evolutionary processes that maintain diversity. Over time, lineages may expand or contract their distribution, causing turnover in population genetic composition. At individual loci, migration, drift, and selection (among other processes) may affect allele frequencies. Museum specimens of widely distributed species offer a unique window into the genetics of understudied populations and changes over time. Here, we sequenced genomes of 130 herbarium specimens and 91 new field collections of Arabidopsis thaliana and combined these with published genomes. We sought a broader view of genomic diversity across the species, and to test if population genomic composition is changing through time. We documented extensive and previously uncharacterized diversity in a range of populations in Africa, populations that are under threat from anthropogenic climate change. Through time, we did not find dramatic changes in genomic composition of populations. Instead, we found a pattern of genetic change every 100 years of the same magnitude seen when comparing Eurasian populations that are 185 km apart, potentially due to a combination of drift and changing selection. We found only mixed signals of polygenic adaptation at phenology and physiology QTL. We did find that genes conserved across eudicots show altered levels of directional allele frequency change, potentially due to variable purifying and background selection. Our study highlights how museum specimens can reveal new dimensions of population diversity and show how wild populations are evolving in recent history.

A photo with dried Arabidopsis thaliana, also known as thale cress, taped to an off white sheet of paper. There is a bright white square piece of paper in the bottom left corner that has writing. The title of this sheet of paper is "Herbier du Bureau de Botanique appliquee, Petrograd.".

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Organismal Agency"

WalshDr. Denis Walsh

Bio:
Denis Walsh is Professor in the Department of Philosophy and the Institute for the History and Philosophy of Science at the University of Toronto. He completed a PhD in Biology at McGill University, Montreal and a PhD in Philosophy at Kings College, University of London. He is author of Organisms, Agency and Evolution (2105 Cambridge University Press)

Abstract:
Philosophers of biology and evolutionary biologists have recently begun to propound the view that organisms are agents and that understanding their agency should have a substantial impact on our understanding of the dynamics of evolution. This suggestion has been met with a fair degree of scepticism and consternation. The objective of this talk is to offer an overview of organismal agency. Questions to be discussed include: In what sense are organisms agents? In what ways might organismal agency alter our conception of evolution? How does organismal agency relate to proposals for an extended evolutionary synthesis? Is the agential perspective consistent with gene-centred modern synthesis thinking about evolution?

Watch the seminar here!

 

Date:
Location:
THM 116

"Organismal Agency"

WalshDr. Denis Walsh

Bio:
Denis Walsh is Professor in the Department of Philosophy and the Institute for the History and Philosophy of Science at the University of Toronto. He completed a PhD in Biology at McGill University, Montreal and a PhD in Philosophy at Kings College, University of London. He is author of Organisms, Agency and Evolution (2105 Cambridge University Press)

Abstract:
Philosophers of biology and evolutionary biologists have recently begun to propound the view that organisms are agents and that understanding their agency should have a substantial impact on our understanding of the dynamics of evolution. This suggestion has been met with a fair degree of scepticism and consternation. The objective of this talk is to offer an overview of organismal agency. Questions to be discussed include: In what sense are organisms agents? In what ways might organismal agency alter our conception of evolution? How does organismal agency relate to proposals for an extended evolutionary synthesis? Is the agential perspective consistent with gene-centred modern synthesis thinking about evolution?

Watch the seminar here!

 

Date:
Location:
THM 116